

Chaînes de traitements automatisées

Prise en main du modeleur graphique de QGIS

@Boris Mericskay

Hiver 2019

La séance

Ressources

• Jeux de données et modèles

http://sites.univ-rennes2.fr/mastersigat/Cours/Modeleur_graphique_DATA.zip

Mise en place de 3 chaînes de traitements automatisées pour se familiariser avec le modeleur graphique

- Recherche de zones optimales relatives à un ensemble de critères
- Extraction et enrichissement de couches
- Géoscoring sur l'accessibilité en transport en commun des équipements sportifs de la ville de Rennes

Chaîne de traitement automatisées ?

- Les solutions d'automatisation de chaînes de traitement (*workflow*) permettent de nouvelles formes d'interactions avec les données
 - Tant sur plan analytique que de l'interopérabilité
- Objectif : mettre en place des modèles de concaténation de séquences d'outils de géotraitements
 - Particulièrement utiles voire bien souvent incontournables à l'heure de la prolifération des données
 - Eviter les processus répétitifs
 - Gain de temps et de stabilité
 - Permet de conceptualiser graphiquement ses chaînes de traitements

Chaîne de traitement automatisées

- Une chaîne de traitement automatisée consiste à appliquer sur un ensemble de données une série de traitements et/ou de transformations (attributaire, géométrique, projection, conversion,...)
 - Regroupés dans un modèle unique, les traitements structurés en sous-tâches sont plus simples à exécuter, prennent moins de temps et peuvent être réutilisés sur d'autres jeux de données.

Le modeleur graphique de QGIS

- QGIS propose une interface de modélisation graphique assez intuitive pour la mise en place de chaînes de traitement automatisées.
 - Accessible via l'interface graphique de la librairie SEXTANTE, le modeleur graphique permet d'utiliser une panoplie d'outils Open source issus de différentes bibliothèques (GDAL, GRASS, SEXTANTE, Saga, etc.).
 - Les chaînes de traitements peuvent êtres exportées en script Python
 - Attention ! le modeleur graphique de QGIS n'est pas entièrement stabilisé
 - La mise en place de modèles nécessite rigueur et patience

https://docs.qgis.org/2.14/fr/docs/user_manual/processing/modeler.html

Interface du modeleur graphique de QGIS

Première chaîne de traitement

Objectif : identifier les zones optimales pour la construction d'une résidence

Critères d'implantation :

- Prés d'une école (-500m)
- Près d'une station de métro (-500m)
- Près d'un arrêt de bus (-200m)
- Près d'une aire de jeux (-300m)
- Dans une zone de PLU de type U/AC

- Proximité aux écoles (-500m)
 - Ajouter une couche vecteur (écoles)
 - Ajouter et configurer l'algorithme de distance tampon

🔮 Modeleur de traitement			
📁 🖬 💀 🛛 🖶 🔛 🛛 💷 🖉			
E-Paramètres	Exercice 1	M1	
- 🕂 Boolean			
+ Extent			<u> </u>
- + File			
- Dumber	4 Ecole	X	
- 🕂 Raster laver	a Leois		
- String			
Table field		In H	
🕂 Table multiple field			
		🥟 Variable distance buffer 🛛 落	
Point		le la	
a rone		Out 🕀	
	1		
	1		
	1		
	1		
	1		
	1		
	1		-1
Entrées Algorithmes	4		

ixed distance buffer		? ×
ramètres Help		
Description Tampon ecole		
Couche en entrée		
Ecole		▼
Distance		
500.0		-
Segments		
5.0		•
Dissoudre le résultat		
No		•
Tampon <outputvector></outputvector>		
[Enter name if this is a final result]		
Algorithmes parents		
0 éléments sélectionnés		
	 OK	Appuler

Etape 2.

- Proximité aux stations de métros (-500m)
 - Ajouter une couche vecteur (métros)
 - Ajouter et configurer l'algorithme de distance tampon
 - Ajouter et configurer l'algorithme de découpage (tampon métro/tampon école et sortie)

🛿 Modeleur de traitement	Evenine 1	Int		Fixed distance buffer Paramètres Help Description Tampon Metro	2 X	
Coperation Coperation C	Ecole	Metro		Metro Distance \$500.0 Segments \$5.0 Dissoudre le résultat No Tampon <outputvector> [Enter name if this is a final result] Algorithmes parents 0 éléments sélectionnés</outputvector>		۲ ۲ ۲ ۲
Entrées Algorithmes	×		•			

ОК

Annuler

Etape 2.

• Exécuter la chaîne de traitement pour tester

• Lancer l'exécution

Configurer les entrées

(définir le chemin d'accès aux données)

🕽 Exercice 1	<u>? ×</u>
Paramètres Journal Aide	Exécuter comme processus de lot
Metro	
C:/Users/mericskay_b/Dropbox/Hiver 2018/M1 SIGAT/Modeleur graphique/Data/Velos/metro.geojsc	on 💌 🥥
Ecole	
C:/Users/mericskay_b/Dropbox/Hiver 2018/M1 SIGAT/Modeleur graphique/Data/Velos/ecoles-renne	es(1).geojson 💌 🥥
Clip ecole/metro	
Test1	
	0%
1	Run Fermer

Etape 3.

- Proximité aux arrêts de bus (-200m)
 - Ajouter une couche vecteur (bus)
 - Ajouter et configurer l'algorithme de distance tampon
 - Ajouter et configurer l'algorithme de découpage

Etape 4.

- Proximité aux aires de jeux (-300m)
 - Ajouter une couche vecteur (jeux)
 - Ajouter et configurer de reprojection de la couche WGS84 \rightarrow Lambert93
 - Ajouter et configurer l'algorithme de distance tampon
 - Ajouter et configurer l'algorithme de découpage

Etape5

- Prise en compte du zonage en vigueur (zones UD)
 - Ajouter une couche vecteur (PLU)
 - Ajouter et configurer l'algorithme d'extraction par attribut (cf. figure)
 - Ajouter et configurer l'algorithme de découpage
 - Configurer la couche de sortie

		? :
aramètres Help		
Description Extraxtion zones UC		
Couche en entrée		
PLU		•
Attribut de sélection		
libelle		T
Opérateur		
=		_
Valeur		
		<u> </u>
Extrait (attribut) <outputvector></outputvector>		
[Enter name if this is a final result]		
Algorithmes parents		
0 éléments sélectionnés		
	ОК	Annuler

17 entités

Chaîne de traitements

Chaîne de traitements

Exercice 2

 Extraire de manière automatisée les arrêts de bus des lignes de type ChronoStar

Exercice 3

- Automatiser la constitution de couches thématiques
 - Extraction des communes en fonction des contours d'un EPCI
 - Ajout à la couche des communes des informations par jointure attributaire
 - Calculs à la volée de nouveaux indicateurs

• Extraction des communes en fonction des limites d'un EPCI

• Extraction des communes en fonction des limites d'un EPCI

• Extraction des communes en fonction des limites d'un EPCI

Etape 2.

- Jointure attributaire avec le tableur pour ajouter la variable de population à la couche des communes de l'EPCI
- Calcul de la superficie des communes des communes de l'EPCI
- Calcul de la densité de population des communes de l'EPCI

Etape 2.

- Jointure attributaire avec le tableur
- Calcul de la superficie
- Calcul de la densité

Chaîne de traitements

Exercice 3

Automatiser un géoscoring sur l'accessibilité en transport en commun des équipement sportifs de la ville de Rennes

Scoring automatisé pour le métro

Scoring automatisé pour le métro

Chaîne de traitements du géoscoring

Evaluation

- Pour le 31 mars en binôme ou seul
- Réaliser une chaîne de traitement automatisée (extraction, enrichissement, scoring,...) sur la thématique de votre choix
 - Mobiliser en entrée des données vectorielles et des tableurs
 - Mobiliser des traitements de transformation, extraction, analyse,...
- Livrables :
 - Un dossier expliquant la démarche, les données, la chaîne de traitement (4p)
 - Un fichier .ZIP avec les données et le modèle pour pouvoir le tester